mercredi 6 mai 2020

Why my RegexTokenizer transformation in PySpark gives me the opposite of the required pattern?

When I use the RegexTokenizer from pyspark.ml.feature to tokenize sentences column in my dataframe to find all the word characters, I get the opposite of what I would get when the python re package is used for the same sentence. Here is the sample code:

from pyspark.sql import SparkSession
from pyspark.ml.feature import RegexTokenizer
spark = SparkSession.builder \
        .master("local") \
        .appName("Word list") \
        .getOrCreate()

df = spark.createDataFrame(data = [["Hi there, I have a question about RegexTokenizer, Could you 
                           please help me..."]], schema = ["Sentence"])

regexTokenizer = RegexTokenizer(inputCol="Sentence", outputCol="letters", pattern="\\w")
df = regexTokenizer.transform(df)
df.first()['letters']

This gives the following output:

[' ', ', ', ' ', ' ', ' ', ' ', ' ', ', ', ' ', ' ', ' ', ' ', '...']

On the other hand if I use the re module on the same sentence and use the same pattern to match the letters, using this code here:

import re
sentence = "Hi there, I have a question about RegexTokenizer, could you 
                           please help me..."
letters_list = re.findall("\\w", sentence)
print(letters_list)

I get the desired output as per the regular expression pattern as:

['H', 'i', 't', 'h', 'e', 'r', 'e', 'I', 'h', 'a', 'v', 'e', 'a', 
'q', 'u', 'e', 's', 't', 'i', 'o', 'n', 'a', 'b', 'o', 'u', 't', 
'R', 'e', 'g', 'e', 'x', 'T', 'o', 'k', 'e', 'n', 'i', 'z', 'e', 
'r', 'c', 'o', 'u', 'l', 'd', 'y', 'o', 'u', 'p', 'l', 'e', 'a', 
's', 'e', 'h', 'e', 'l', 'p', 'm', 'e']

I also found that I need to use \W instead of \w in pySpark to solve this problem. Why is this difference? Or have I misunderstood the usage of pattern argument in RegexTokenizer?

Aucun commentaire:

Enregistrer un commentaire